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Abstract--The conservation equations for one-dimensional two-phase flow are derived from first principles. 
The effects of the radial distributions of velocities, enthalpies, and void fraction are taken into account 
through the use of correlation coefficients. Several simplified separated-flow model formulations that have 
appeared in the literature are derived from these equations by specializing the values of the correlation 
coefficients. The equivalence of these formulations under certain assumptions is demonstrated. Finally, new 
Lap, ran#an forms of the conservation equations, written in terms of the velocities of the center of mass, 
momentum, and energy are presented. 

1. INTRODUCTION 

A vast amount of two-phase flow thermo-hydrodynamics work has been done using various 
forms of the mass, momentum, and energy conservation equations. Only relatively recently, 
however, has a rigorous and systematic study of the correct forms of the two-phase conservation 
equations been undertaken (Deihaye 1%8; Ishii 1975). These studies have shown that, although it 
is possible to write exact conservation equations, the degree of complexity of such forms, and the 
large amount of detailed local and statistical information required for their solution, prohibit their 
use in practical applications. Thus, it is necessary to use simplified forms of the conservation 
equations for many problems of practical significance. 

Most of the previous simplified formulations of the conservation equations have either 
ignored or incompletely taken into account the radial distributions of the phases and of the phase 
velocities and enthalpies. These radial distribution effects are explicitly taken into account in this 
paper through the use of correlation coefficients. The paper also reviews a number of simplified 
one-dimensional formulations that have appeared in the literature and discusses their relation to 
the more rigorous formulations that are derived here. The equivalence of the various 
formulations under certain assumptions is shown. Finally, new alternative forms of the 
conservation equations that might be useful for certain classes of problems are presented. 

All turbulent flows have strong random components. Two-phase flows exhibit an even higher 
degree of randomness due to the local statistical variations of the void fraction, which can be 
defined as the probability that a point in space will be surrounded by the gaseous phase at some 
time " t "  (Delhaye 1968). The link between this theoretical definition of the local, instantaneous 
void fraction and a typical experimental measurement is provided by the ergodic hypothesis 
(Delhaye 1968), which essentially states that, for a stationary process, the average of the 
simultaneous observations of N experiments is equivalent to the average of N observations in 
time of an identical experiment. There are, however, other possible definitions of the local 
instantaneous void fraction. For instance, one can consider a small volume element containing 
both phases in variable proportions and in this manner arrive at a local, instantaneous volumetric 
concentration. In this approach the two-phase mixture is considered similar to an emulsion. The 
work of Wundt (1%7) and Bijwaard et al. (1964) is based on this approach. 

The two-phase flow equations can be rigorously written in terms of local, instantaneous, 
random variables (Delhaye 1974; Ishii 1975). Since the use of one-dimensional time-dependent 
equations is often imposed by practical considerations, the problem of the correct statistical and 
cross-sectional averaging in a flow passage arises. For the purposes of this paper the local void 
fraction a, as well as the other flow variables, are statistically-averaged deterministic quantities. 
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The validity of the resulting equations presented here has been previously discussed by Vernier 
& Delhaye (1968) and Kocamustafaogullari (1971). 

Adopting commonly used notation (e.g. Zuber & Findlay 1965), we indicate by angle brackets 
(()) quantities averaged over the entire cross-sectional area, A .... 

1 [1] 

while for quantities clearly related to the gaseous or liquid phase only, 

CI~)L 1 f L  Ax-sCl-a)  x , .fL(1- a )dA = ((1-  a)fL) C l - a )  ' 

/,o,o : l Ax-,Ca----~ f~ct OA - (aft) 
x - ,  C ~ )  ' 

[2] 

where the subscripts G and L denote the gas and liquid phases, respectively. Thus, for example, 
the average velocities of the two phases are defined as, 

f~a (UL(1 -- a)) CUL)L _____a 1 UL(I -- Or) dA -- 
Ax , ( l - a )  , ,  -0--a-) ' 

(UG)~ -- Ax-~Ca) UGOt dA = Cuba) 
, C a )  ' 

and the average enthalpies as, 

a 1 f L  hL(1-c~)dA-ChL(1-a) )  (hL)L -- Ax-,(1-- a)  x-, ( l - - a )  

Ch~)G Ax ,(a) hoa dA = (h~a___Q) 
, C a )  " 

2. FLOW MODELS 

A number of hypotheses must be made about the structure of two-phase flow in order to 
reduce the conservation equations into tractable forms. The simplest possible hypothesis, namely 
that the two phases have equal velocities and temperatures everywhere in the flow channel, 
results in the so-called homogeneous, equilibrium model. The homogeneous, equilibrium flow 
equations can be derived from the more general "separated-flow" model equations by arbitrarily 
equating the velocities and temperatures of the two phases. As pointed out by Bout6 (1975), this 
technique clearly shows the restrictions implied on the evolution of the two-phase mixture. The 
obvious advantage of the homogeneous, equilibrium model equations is that they lmve a form 
similar to that of the single-phase conservation equations and are often analytically tractable. 
These equations have been dealt with extensively in the literature and thus will not be considered 
further here. 

The classical "separated" or "slip" flow model equations can be derived by assuming that the 
products of certain cross-sectional averages of the various quantities appearing in the 
conservation equations are equal to the product of the averages.? This is essentially equivalent to 
assuming flat velocity profiles for both phases, although the assumption of flat void fraction 
distributions is also sufficient in some cases. 

tFor a rigorous study of the approximations involved see Vernier & Delhaye (1968). 
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The two-phase conservation equations are first derived in this paper for arbitrary void 
fraction and velocity profiles. To accomplish this, a number of cross-sectional-average products 
are separated into products of averages through the use of correlation coefficients. The classical 
separated-flow equations are then obtained by specializing the values of these coefficients. These 
equations are subsequently transformed into several equivalent forms that have appeared in the 
literature. 

In diabatic two-phase flow, the radial variations of the enthalpies/~ and hL may be significant 
and can be conveniently accounted for by appropriate correlation coefficients. Since the phase 
enthalpies are unique functions of phase pressure and density one should also consider the radial 
variation of these parameters. However, for most problems of practical concern, the radial 
variation of the phase pressures pc and pL and densities pc and pL can be neglected, and thus the 
cross-sectional phase-average pressure and density are used throughout this paper. This greatly 
simplifies the subsequent analysis and minimizes the number of required correlation coefficients. 

The conservation equations are first derived for an idealized annular flow in a 
one-dimensional duct of slowly varying cross-sectional area (Lahey 1974). This is done only in 
order to better show the physical significance of the various terms, since the resultant 
conservation equations are of more general applicability. Indeed Meyer (1960) has derived an 
equivalent set of equations starting from general integral expressions and Ishii 0975) has derived 
generalized conservation equations which reduce to those in this paper. Moreover, for transient 
phenomena of practical concern, the equations of this paper can be obtained rigorously from the 
exact formulations of Delhaye (1968), Vernier & Delhaye 0968) and Kocamustafaogullari (1971). 

Although the phase conservation equations are derived first in this paper, these are 
subsequently combined to yield the mixture conservation equations. R6ocreux (1973) and Bour6 
& R6ocreux (1972) have noted that when this is done, restrictive assumptions are implicitly made 
and thus the conservation equation of the mixture is less general. For example, it may be 
necessary to assume equal phase pressures, saturation of one or both phases, a certain slip law, 
etc. R6ocreux has applied the complete system of the six conservation equations to two-phase 
critical flow problems. Although such a system of equations is general and exact, the 
phase-to-phase and phase-to-wall interaction terms must be known before a solution is possible. 
Unfortunately, accurate specification of these interaction terms is currently beyond the state-of- 
the-art. Thus, in this paper the various forms of the two-phase mixture conservation equations 
are discussed, since these, coupled with various empirical wall interaction and void models, are 
sufficient for a large number of practical problems. 

3. T H E  M A S S  C O N T I N U I T Y  E Q U A T I O N S  

With reference to figure 1, consider the mass conservation equations, written separately for 
each phase (Lahey 1974; Zuber 1967a), 

3 
-~(pG(a )A~-~ ) +-~ (pG(a  )(U6)~A~-~ ) = ~W' , [3] 

O(pL(1 - a ) A x - , ) +  O (pL(1 -- a)(UL)LAx-s) = --SW' ,  [4] 

where 8w' is the amount of liquid evaporated per unit axial length in the differential control 
volume. In the most general case 8w' must be obtained from an appropriate vaporization model. 
For the special case of bulk boiling, where thermodynamic equilibrium is assumed, and flashing is 
negligible, a simple heat balance yields the following approximation, 

8w'  = q"Ph/hL~ = q ' /hLo,  [5] 



480 G. YADIGAROGLU and R. T. LAHEY. JR. 

~z <eG> G + Az 
az ,3z 

w L WG + ~wG w L + ~ AZ ~'z 
~z 

~<UL>l. - 
<UL~>L+ - -  Az c')<UG~ G 

~G 

~ eL~:~ L 
• <UG> G P 

PL 

<eG> G 

OG 

Figure I. Controlvolumeforidealizedannularflow. 

in which q" denotes the heat flux, q' denotes the heat addition per unit length and hL~ is the latent 
heat of vaporization. Ph denotes the heated perimeter. 

Equations [3] and [4] can be added to obtain the continuity equation for the two-phase 
mixture, 

-~t ((p)A~_,) + ~z (GAx_,) = O, [61 

where (p> = (1 -  a)pL + (ot)pG and the mass flux, G, is given by, 

G = pL<l- a><UL>L + p~<~><U~>o. [7] 

Zuber & Dougherty (1967) and Zuber (1967b) have noted that two separate phase continuity 
equations are needed, since the two-phase mixture continuity equation alone normally cannot 
correctly describe the propagation phenomena taking place in boiling channels. Moreover, Zuber 
& Staub (1966, 1967) have shown that the so-called void propagation equation, together with the 
two-phase continuity equation of the mixture, form a set equivalent to the two separate phase 
continuity equations. 

4. THE MOMENTUM EQUATIONS 

The momentum equations for each phase are examined next. Considering the control volume 
of figure I, conservation of momentum for the liquid phase implies, 

- a---~(pL ( l a  _ a)A,,_,)Az + pja ((1 - aza)A~-~)Az - gpL(l -- a)A~ ~,Az sin 0 - rwLPs,, AZ + z~P, Az 

= -~t (pL(1 -- t~>ax ,(UL)LAz)+ ~[pLa~ ~((1 -- ,~)u,?>lAz + ~w' U, az .  [8] 

The first term in this equation originates from the external forces applied at the ends of the 
control volume. The second term is the projection on the z axis of the liquid flow area variation 
(due both to duct and to liquid-phase flow area changes) times the interfacial pressure p,. The 
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symbols z~ and zw~ denote the shear stresses at the liquid-vapor interface and at the wall, 
respectively. Ps and P~ denote the wetted and interface perimeters, respectively. 

The first two terms on the R.H.S. of [8] are the temporal and spatial acceleration terms, 
respectively. The last term represents the momentum exchange due to mass transfer between the 
phases, and deserves special attention. 

The appropriate velocity for momentum exchange due to mass transfer is taken to be the 
interfacial velocity U,. It is assumed that this term can be written as, 

A 
U, = r/(UL)L + (1 -- n)(U~)a. 

The momentum-transfer parameter ,/ has been introduced in order to maintain generality. The 
classical assumption is to take 7/= l, and thus assume that the average liquid-phase velocity 
alone is important in evaporative momentum transfer. Alternatively, based on entropy 
production considerations, Wallis (1969) recommends -q = 1/2. This implies that the effective 
velocity of the evaporated liquid is ((UL)L + (Uo)~)/2. Since evaporation is assumed to occur at 
the interface this choice does not appear to be unreasonable and leads to momentum equations 
for each phase that are symmetrical for evaporation and condensation. Nevertheless, for the flat 
velocity profiles typical of highly turbulent flows, a value of r /c lose  to unity is normally a better 

choice. 
The first two terms on the L.H.S. of [8] can be expanded, and assuming that pi - pL, can be 

simplified to yield to first order, 

- (1 - a)A._~ff-~Az. 

This is an interesting result, since the same expression is obtained by neglecting axial flow area 
changes of the duct and liquid-phase area changes due to evaporation. Thus, for a variable-area 

duct the liquid-phase momentum equations becomes 

z~LPt~ + z,P, = _~t (pL(1 _ a)(UL)L) -(1-a)~f-~-gpL(1-a)sinO-~x~ Ax s 

t~w' 
+ "I~4(pLAxAx-~ OZ ,((1 -- OI)UL2)) + A--~s ('q(UL)t, + (1 - ~/)(uo)o). [91 

The momentum equation for the vapor phase can be derived in a similar manner: 

- (a)~ff-ff-~- gp~(a) sin 0 
TiPi ~w~Pz~ 0 

A,,_~ ~ = -~(pa(a)(ua)~) 

+ _ ~ l  0 ~ 8w' 
Ax ~ ~z (p~A~ ,(au~ ) ) -  A---]---]-s (~/(UL)L + (1 - 'O)(u~)~). [10] 

Mixture momentum equations 
A 

Using the definition, PFw = PiLrw,. + P~zw~, and assuming that the liquid and vapor phase 
static pressures, pL and pc are equal to the static pressure of the system, p, [9] and [10] can be 
added to yield the momentum equation of the two-phase mixture, 

~p "r~P~ 
Oz - g(p) sin 0 - A.-~ = ffi (pL (1 - a)(UL)L + p~(a)(u~)~) 

+=--L-"-2-~(pLAx ~((1- 2 + 2 Ot)UL ) pGAx-,(aU~ )). 
A,-s Oz 

[11] 
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At this point it is necessary to separate the products that appear inside the angle brackets of 

the spatial acceleration term, in order to put [11] into a directly usable form. Following the 
general approach of Hancox & Nicoll (1971), we define the correlation coefficients, 

a ((I - a)UL 2) 
(I - a)(uL)~ 

, (auo2> 
Ca= (a)(u~)~ ~' [12] 

and introduce these into [11]. Using [7] and the following expressions for the flow quality, 

[11] can be transformed into, 

(u~).p.(a> 
(x> = G ' 

I--(X)=(I__x)=(UL)LP L(l-a) 
G ' [13] 

where, 

Op ~'wPl OG 1 0 [G2A~-,\ 
_ = _ _ + _ _ _ _  

cgz g(p)sin 0 A~-~ Ot Ax-s az ~ o ) '  [141 

1 ~ (x) 2 p--7 = CL- (1 - x) 2 I- C~ 
p,.(l-a) pc(a)" 

[15] 

The parameter p' is the generalization of Meyer's (1%0) "momentum density", which is not 
really a density in the physical sense. Its definition, however, makes it possible to write the 
two-phase momentum equation in the same form as the homogeneous-flow or the 
single-phase-flow momentum equations. For CL = CG = 1114] becomes the one-dimensional 
two-phase momentum equation originally derived by Meyer (1%0). This form of the mixture 
momentum equation is currently widely used; however, other forms are possible. First a form of 
the mixture momentum equation similar to the one presented earlier by Zuber (1%7a), and then a 
Lagrangian form, popular in the Russian literature, are considered. 

Drift-velocity formulations of the two-phase momentum equation 
Zuber & Findlay (1965) define the local drift velocity of the gas with respect to the local 

volumetric flux ] as, 

v~j __a u~ - j ,  [16] 
where, 

A 

j = (1 - a)UL + aU~. [17] 

Using [2], the definition of phase averages, [17] can be averaged over the cross-section, 

(j) = (1 - Ot)(UL)L + (ot)(U~)c. [18] 

Multiplying [ 16] by a, integrating over the cross-section, and using [7], [ 18] and Zuber & Findlay's 
(1%5) definitions, 

Co = (~>( j ) ,  

and, 

Vo, = (a )  = (v~j)o,  



VARIOUS FORWS OF TrtE CONSERVATION EQUATIONS IN TWO-PHASE FLOW 

the following identities are obtained, 

G (a) pc 
(UL)L = (p) (I - a) (P)[(C0- l)(j) + Vo,], 

(uo)o = 7QzG, + ,LL, [(Co - l)<j)+ Vo,], 

where, [2] and [16] imply, 

(C0- 1)(j) + Voj = (uo)o - (j). 

If [19] is multiplied by (1-  a) and added to (a) times [20] we obtain, 

G + (pL - po)<(~) q) =~-~ (p) [(Co- 1)q)+ voj] 

483 

[191 

[20] 

[21] 

-~z {A~-,~p}[CLpL(1--a)(UL)r + Copo(a)(uo)o]} 

+ (9 [ ~ A x  .v~.rGtc ° _ --a}pLCo) V,~,]} 
< . >  - , ,  . [241 

In some instances, it might be reasonable to assume that CL = Co = CLo (not necessarily a 
constant). Then the spatial acceleration term can be simply written as, 

2 Of ~ 2] 0 [G Cro A ]+ O [A ( )pOpL 
-~ L ~  . . . .  J 7z L ..... <i---g~> C'°(v° ' )  • 

[25] 

Finally, adopting the restrictive assumption that CL = Co = 1, the form of this term previously 
presented by Zuber (1967a), but with the corrected value Vbj, is obtained. Hence using the 
identity, 

p~ -(p) (a) 
(p)-po ( l - a )  [26] 

the cross-sectionally averaged, one-dimensional, two-phase momentum equation of the mixture 

The spatial acceleration term of the momentum conservation equation [11] is rewritten in 
terms of the velocity of the center of mass and Vbj by introducing the correlation coefficients, CL 
and Co: 

Vbj = (Co- 1)(j) + Voj. [23] 

Equation [22] is a fundamental identity relating the velocity of the center of volume (j) to the 
velocity of the center of mass Um which, as will be shown later, is equal to G/(p). The last term 
of [22] represents the mass flux drifting out of a control volume moving with the velocity of the 
center of mass. The (Co-1)(j) component of this term is due to the non-uniformity of the 
velocity and void fraction profiles, while the Voj component accounts for the local drift between 
the phases. An equation similar to [22] was presented earlier by Zuber (1967a). This equation was 
not averaged across the cross section and thus did not contain the (Co- 1)(j) term. It is evident, 
however, that this term becomes dominant at high mass fluxes and must be included in one- 
dimensional analyses. For convenience define: 

[22] 
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can be rewritten in Eulerian form as, 

Op 
Oz g (p ) sin 0 

rwP~ 1 0 [A. s[ p L - ( p ) ]  } = 0 G +  l__~O[G2Ax-s] 
A~-~ A~ , Oz[. - [ ( p ) - p ~ J ~  (V~j)2 Ot Ax-~ Oz [ {p) J" 

[27] 

Several things should be noted about [27]. First of all, since it was derived directly from [11] 
with the assumption C ~ -  CL = 1, it contains no more information about momentum 
conservation than does [14], when the same assumptions are made. That is, integration and 
numerical evaluation of [14] and [27] produce the same results. However, [27] has more physical 
appeal since it is written in terms of the velocity of the center of mass and thus uses the correct 
two-phase density (p) in the spatial acceleration term, rather than the defined quantity p'. 

The spatial drift gradient (i.e. the last term on the L.H.S. of [27]), is due to the relative velocity 
between the phases, and can be considered as an additional volumetric force in the same sense 
that the classical Reynolds stress term in single-phase turbulence is considered a force (e.g. see 
Wallis 1968). Physically it represents the net momentum flux with respect to the center of mass of 
the flowing two-phase mixture. Thus, the center of mass formulation [27] lends itself to a readily 
understandable interpretation of the various terms and as already noted by Zuber (1966), its 
derivation is consistent with classical techniques used in the kinetic theory of gases. 

Another observation is that the average drift velocity Vbj appears explicitly in [27], while the 
average void fraction (a) appears in [14] through the definition of p'. Although the void fraction 
can be obtained if one knows the steady-state drift velocity, these two quantities are not 
necessarily interchangeable under transient conditions. The present state-of-the-art is to use 
empirical void-quality correlations derived from steady-state experiments to predict the local 
void fraction from the local, transient flow quality. Under some circumstances it might be more 
appropriate or convenient to use correlations for the drift velocity and the coefficient Co. The 
absence of direct information on Vbj, however, currently limits the practical applications of this 
formulation. 

Finally, the spatial drift gradient can also be written in terms of the relative average velocity 
U, between the phases, 

A 
ur  = (u~)~ - (UL)L, [28] 

through the use of [26] and the following identity, 

a s ,  

v~ ,  = (uo)~ - (i)  --- (1 - , ~ )u , ,  

0 f ,  [pL--(p)]pLpo,,,, ,~] a [A._(a)(1-a)p,_p~l.l~]. 
T z l  . . . .  L(p- -~-  p~ J ~--~ - ' ' ° ' '  J = ~ L ] ( o )  

[29] 

For certain applications, in which the relative velocity is known or specified, this may be a more 
useful form. 

Lagrangian forms of the momentum equation 
Consider the Lagrangian form of the one-dimensional two-phase momentum equation. 

Equation [27] can be recast into a Lagrangian formulation by expanding its right hand side and 
combining it with the continuity equation [6], written in the form, 

Ax s OUm -~((p)A._s)+(p) - Oz = 0 '  [30] 
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where, 

to obtain, 

Dt +Um , [311 

(p)A~_, D,,UmDt t-~z Ax-~ (p----~_p~J-I~(v~j)(p) =-A~_,~z  -~wP~-gA~_,(p)sinO. [32] 

This is a form of the momentum equation which has previously been used by Ishii & Zuber (1970) 
to investigate hydrodynamic stability phenomena. 

There is another Lagrangian formulation of the two-phase momentum equation which 
appears in the literature. For a separated flow model, i.e. for C~ = CL = 1, this formulation can be 
readily derived from [9] and [10]. The right hand side of the liquid-phase momentum equation [9], 
combined with (UL)L/Ax-~ times the liquid-phase continuity equation [4] yields, after expansion 
of the derivatives and simplification, 

~_,FL =(1--ot>pL +(UL>L + (1-  t/)A---~_ U,, [33] 

where Y. FL denotes the sum of the external forces applied to the liquid phase. The last term in 
[33] can be regarded as a negative volumetric force due to "vapor thrust". That is, it can be 
interpreted as a reaction force on the liquid due to evaporation. Only for the special case of 71 = 1 
does this term vanish. 

In a similar fashion, the vapor-phase momentum equation can be recast into a Lagrangian 
formulation by subtracting (uc)a/Ax-~ times the vapor continuity equation [3], from the R.H.S. 
of the vapor momentum equation, [10]: 

, , r a ( u , > . + ,  , a<u > q+nSw' 
E Fo A,-, U,. [34] 

For the case of evaporation, the last term in [34] can be regarded as a negative volumetric force 
due to the slower moving evaporated liquid retarding the vapor phase by momentum transfer. 

We are now in a position to write the momentum equations for the liquid and the gaseous 
phases in terms of the material derivatives of each phase, 

D L  A 0 , ,  , t9 
= [35] 

~ -  - ~ -  ~ u o ~ -  z . [36] 

Combining [9] and [33], we obtain for the liquid phase, 

Op ~'wP~ T,P, .. . 8w' DL(UL) - ( l - a ) - ~ - g p L ( 1 - a ) s i n O - - - + - -  U ,  = ( 1 - - a ) p L  Ax_, A~-~ - (l - t/)A-~_ ~ Dt [37] 

Similarly, for the vapor phase, [10] and [34] yield, 

- (a)~z - gp~(a) sin 0 - ~ -  
• ,P, ,/Sw' D o ( u o ) o  [38] 

Ax-. At- ,  [I, = (a)po Dt 

Equations [37] and [38] can be added to obtain the momentum equation for the two-phase 
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mixture, 

0,o g(p) sin 0 - r'~PI - 6w' DL (UL)L ~-(a)p~ D6(UG)~ 
OZ Ax-s Ax-, U, = (1 - a)pL D ~  Dt [39] 

This is a form of the two-phase momentum equation which has been popular in the European and 
Russian literature. The last term on the left hand side of [39] is the net volumetric force due to 
evaporation and is frequently referred to as the "Mescherskiy force" in the Russian literature 
(Kutateladze & Styrikovich 1960). Comparing [32] with [39], it can be seen that a fundamental 
relationship between the acceleration of the center of mass of the system and the acceleration of 
the individual phases is given by, 

( p ) ~  = (1 - a)pL DL(UL)LDt +(a)po Da(uo)o 

8w' 1 0 { A . _ , [ p L - - ( p ) ] p L p ~ ( v b , ) 2  ) 
+ ~ _ ,  U, A,- ,  Oz I (p ) -p~J  (p) " [40] 

5. THE ENERGY EQUATIONS 

We now turn our attention to the phasic energy equations. In figure l the control volume 
boundary is presumed to be located just inside the liquid phaset (i.e. an infinitesimal distance 
from the vapor-liquid interface, on the liquid side). For this control volume, conservation of 
energy for the liquid phase implies, 

~ {pL(eLUL(1 - a))A~-.}Az + ~w' e, Az 

+ p , ~  A~-.Az - ~'t,P,U~Az - q'~P~Az - q'LPh~Az 

0 
- q L4~-,(1 - a)Az + ~  {#L((eL --p/pL)(1 -- a))Ax-,hz} = O. [41] 

The local values of eL and ea are defined by, 

2 

ek = hk + + gz sin 0, k = L or G, [42] 

w h e r e  hk denotes the local enthalpy of phase k. 
The first term in [41] represents the gradient of convective energy transfer. The second term is 

the energy transfer due to change of phase, where the specific inteffacial energy is given by, 

gt = hL, + + gz  s in  0, 

where U, has the same definition as in the momentum equation. 
The third term in [41] is the "pdV" reversible work due to changes in control volume size. The 

fourth term is the fraction of interfacial energy dissipation which crosses the boundary of the 
control volume. The interracial dissipation parameter ~ is defined as the net fraction of the energy 
dissipated at the interface which is transferred across the control volume boundary. 

The  fifth and sixth terms are the heat-flux terms due to the transfer of sensible and latent heat 

tit should be noted that one can also use control volumes that do not include the interface and account for the interracial 
transfers by "jump conditions". This approach has been taken by Bour~ & R~ocreux (1972), Delhaye (1974), Bour~ (1975), 
and lshii (1975). 
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to the liquid phase at the vapor-liquid interface and the heated wall, respectively. The volumetric 
heat generation in the liquid phase is given by q~. The last term is the energy rate-of-storage 
term in the liquid control volume. It should be noted that the interfacial exchange terms would 
have been different if the control volume for the liquid phase extended beyond the interface, 
instead of being just within it. 

The energy equation for the gas phase can be derived in a similar manner: 

~z{p~ (e~uoa)A.-. }Az + p , - ~  A.-. Az 

+ q';P, Az + ~r,P,U~Az - 6w'e, Az - q~A. - . (a )Az  

- q~P~Az  + ~t {p6((e~ - p / p G ) a ) A . - . A z }  = O. [43] 

For practical applications, one normally assumes that the interfacial pressure is equal to the 
phase static pressure (i.e. p, = pc = pc). 

Using the definitions, 
A 

q "P, . . . . .  p = qLPhc + q O  h~, 

A ot 
q" = qt .(1-  a)+ q'~a) , 

[41] and [43] can be added to obtain the energy equation of the two-phase mixture: 

~ [ P L  < ( e L - P ) ( 1 - a ) > A x - , + p c < ( e ~ s - P ) a > A x - s ]  

. . . .  A + [pL(eLuL(1 a))A~_, + p~(e~u~a)A~_,] = q"P~ + q ~_,. [44] 

It is necessary at this point to again introduce correlation coefficients in order to separate the 
products hcUL(1--a), UL(UL2/2)(1--a) etc., that appear within the angle brackets of [44]. 
Defining, 

and 

& 

C' L = 

A 
Cb= 

(hLUL(1 - a)) (hLUL(1 - a)) (hLUL(1 - a)) 
( h L ) L ( f f L ( 1  - -  0 / ) )  ( U L ) L  ( h L ( 1  - -  a ) )  ( h L ) L ( U L ) L  (1 - -  a ) '  

(ho)o(u~a) (u~)~(h~a) (ho)o(u~)~(a)' 

(UL(UL/2)(1 - a)) C7. = (UL(UL2/2)(1--a)) 2 
(1/2)(UL)L2(UL(I -- a)) = s , (1/2)(UL)L (1 - a) 

C~ ~= (u°(u~2/2)a) (u~(u~2/2)a) 
(1/2)(uo )as( uaa ) = (1/2)(ua) s(a )" 

[45] 

[46] 

Also defining for convenience the "total energy" correlation coeffcients, 

# 2 A (eLuL(1 - or)) [CL(h~)~ + C,.( l /2)(uL), .  + gz sin O] 
KL = (eL)L(UL)L(I -- a) = [(hL)L + (UL~/2)L + gz sin O] 

(eouoa) [Cb(ho)o + C~(l/2)(uo)a2 + gz sin O] 
Ko = (eo)o(uo)o(a) = [(ho)o + (u,~/2)o + gz sin O] ' 

[47] 
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where the cross-sectional averages for each phase are obtained using [2], 

(e.)k = (h~)~ + (u~/2)k + gz sin 0, for k = L or G, [48] 

the energy equation of the mixture [44], can then be written as, 

A~_= a [ p L ( 1 - a ) ( ( e ~ ) ~ - P ) +  p~(a)((e~)~-f~-)] 

O +~[KLw,_(e~)L + K~w~(e~)~] = q"Ph + q"A=_= [491 

where wL and wo are the mass flow rates of the liquid and gas phases, respectively. Using [13] 
this equation can be rewritten in terms of quality and total mass flux as, 

+ "A O((p}/Y)A=_= + O (GA=_=h')=q"Ph q =-= 

o re'A, ,1 sin 0 -° rc:q Oz [ 2(p') 2 j-gGAx-= -Ot-~ ,-+ Op A. = /20 J at 
[50] 

where the two-phase mixture continuity equation, [6], has been used to simplify the potential 
energy term, and we have defined, 

/YL I [ L  
~-~ p (1 - a)(hL}L +p~(a)(h~)~l [511 

a ' 1 h' = CL( -- x)(hL}L + Cb(x)(h~}~ [52] 

3 3 
1 ~C,, ( l - x )  +C,, ix) [531 (p,,,)2 L 2 2 ~ 2 

pL ( l - -a}  p~tct} 

and O' has been defined by [151 already. 
A remark about the correlation coefficients appearing in the energy conservation equation is 

in order. First, for many cases of interest in adiabatic flow or bulk boiling, the enthalpies of each 
phase are uniform across the cross-section. In this case C;_ and Cb are equal to unity. It is only in 
the presence of thermodynamic non-equilibrium that CL and C ;  are different from unity. 
Second, changes in the terms (uL3(1 - a)) and (uc3a), representing the kinetic energy of each 
phase, are often much smaller than the corresponding changes in the enthalpy terms 
(hLuL (1 -  C~)} and (hou6a). Unfortunately, little experimental information is currently available 
to calculate the values of the correlation coefficients. Thus it is often either acceptable or 
necessary to assume that the values of all the correlation coefficients appearing in the energy 
equation are equal to unity. In this case h' and p" take the forms usually found in the literature 
(Meyer 1960). 

For the special case of a saturated two-phase mixture, in which the properties are only a 
function of h' it may be more convenient to expand the left hand side of [50] and combine it with 
[6] to yield an equation similar in form, but more general, than the one derived by Meyer (1960). 

where 

,,Oh'+ . . O h '  q"Ph+q,,, 1 0 [G3Ax =] 1 0 [G2]+Op 
P--~  t'r-~--Ax-= Ax-=OzL 2(p")2 J -gGsinO A~-=Ot[2p'_l Ot' [541 

O" [ dr7 , d(o)l 
(O)i~;+(tY- h ) d P J  [551 
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The explicit functional form of p" for various special cases of interest has been given by Meyer 
(1960). Equation [54] has been widely used; however, one is required to deal with several 
pseudo-densities (p', p", p').  Moreover, [54] cannot be cast into a true Lagrangian formulation 
and thus it has a limited physical interpretation. 

Lagrangian forms of the energy equation 
Zuber (1967a) has introduced an alternate form of the energy equation which more readily 

lends itself to phenomenological interpretation. This equation is now derived, without making any 
assumptions regarding the values of the correlation coefficients. Equation [43] can be rewritten as, 

a A - " A~-,O[(p)g'l+~-z{ x--~[pL(eLUL(1 a ) ) + p c ( e a u ~ a ) ] } = A ~ - ~ + P h q " + A x - s q  [561 

where 
pL (eL)L (1 -- a> + p~(e6)~(a) 

= [57] <p> 

Using the correlation coefficients, KL and K~, the identities [19] and [20], the definition of the total 
derivative, [31], and the mass continuity equation [6] to eliminate some terms, [56] can be rewritten 
in a Lagrangian form as, 

, • <=> , ]  (p>A.-, D,.~Dt Oz ~ A.-,G6e --A.--,eL~-~pLp~V~, = A.-,O~P. `q''' [58] 

where 

and 

Be* ~ (1 - KL )pL (eL >L (1 -- a> + (1 - K~)po(eo)~<a> 
<p> 

e[~ = ~ K~<e~>o - KL (eL )L . 

[59] 

[6O] 

The term in brackets on the L.H.S. of [58] represents the drift of energy through the 
center-of-mass plane. The first term, Ax-sGSe*, is due to the non-uniformity of the radial velocity 
and energy distributions, while the second term accounts for the unequal velocities of the two 
phases as evidenced by the presence of Vbj. 

For KL = K~ = 1 one obtains, 

(p>Ax-, D"~'+-~z [Ax-,  (a>pLPoVa~eLo]' = A x - , ~ +  Phq" + x ,q " 
Dt <p) [611 

where e~'o has become the familiar, 

A 
e L a  = (e~)~ - ( e L ) L .  

With the exception that Vbj is used rather than V6j, [61] is the form of the two-phase energy 
conservation equation presented earlier by Zuber (1967a). 

Making the assumption of separated two-phase flow again, i.e. assuming that KL = K~ = l, 
another Lagrangian form of the two-phase energy equation can be obtained. By combining [3] 
and [4] with [49], 

, ,  ,DL<eL)L+ , ,Do(eo)a ~"_P~ Op 8w' 
pLt l - -a?- ' - - - -~--  pGta? Dt = ~ + q " +  Ot Ax-s ec~. [62] 
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This form is compatible with the form of the two-phase momentum equation given by [39]. The 
last term on the right hand side of [62] represents the volumetric rate of energy transfer due to the 
evaporation process. Equation [62] is frequently used for evaluating 8w'. For the special case of 
saturated equilibrium, constant pressure, and negligible internal heat generation (q"), kinetic and 
potential energy, [62] yields [5]. 

It should be obvious that the same information on energy conservation is contained in all the 
separated-flow model energy equations, namely in [62] and the simplified forms of [49], [50] and 
[61]. Furthermore, numerous other forms are derivable from [49]. 

6. NEW LAGRANGIAN FORMS OF THE CONSERVATION EQUATIONS 

For certain types of two-phase flow problems Lagrangian formulations of the conservation 
equations result in simple, exact solutions. For example, Gonzalez-Santalo & Lahey (1973) and 
Shiralkar et al. (1973) respectively, have used such formulations for homogeneous and slip flow, 
to study transients in boiling water nuclear reactors. The key to such analyses is the proper 
formulation of the conservation equations. Alternative, potentially useful, Lagrangian forms of 
the conservation equations are now derived. 

Consider the velocities shown schematically in figures 2a-2c. It can be shown that Urn, defined 
earlier as G/(p), is the velocity of the center-of-mass of the two-phase system; i.e. it is the 
velocity of propagation of the plane through which no net mass flux passes. Indeed, equating the 
mass flux terms in figure 2a, 

p ~ ( a ) [ ( u ~ ) o  - U , . ]  = pL(1 - a ) [ U , .  - ( u , . ) L ]  

<PG 0f(UG'Um ) >  =PG "~C'~>(<UG>G - Urn) 

Urn 

<:~p L (1 -(7~ lUre -UL) ~>= 

PL<I "o->'(Um - <UL ~" L ) 

a. THE VELOCITY OF THE CENTER-OF-MASS, U m 

Up 

<UGPG(X(UG-UpI>=<UG~>GPG<O(>(CG<UG>G-Up) <ULPL (1 -OJ (Up-UL)~>= 

<~UL ~'L p L <~ 1 - O.>(Up- CL <UL>  L ) 

b. THE VELOCITY OF THE CENTER -OF-MOMENTUM, Up 

<eG pG txlUG-Ue) > = <eLPL (1 -oJ (Ue-UL)~ >= 

<eG>GPG<~C(~(KG<UG~>G-Ue) ~ ~ < e L > L P L < I - a ~ > ( U e - K L < U L >  L ) 

c. THE VELOCITY OF THE CENTER-OF-ENERGY. U e 

Figure 2. Two-phase velocities. 
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Solving for Um we obtain, 

pL<UL}L<I -- ~} + pG<UG>G(a> -- G 

U. = <I -- ~ >p~ + <a >pC -- (P--5" 
[63] 

It has already been shown that use of a material derivative defined using the velocity of the 
center-of-mass results in relatively simple forms of the conservation equations ([30], [32], and 
[61]) clearly showing the effects of the drift fluxes. It is possible to extend this idea and define 
velocities of the center-of-volume, the center-of-momentum, and the center-of-energy of the 
mixture. The velocity of the center-of-volume of the mixture is simply the volumetric flux, (j>. 
Expressions for the velocities of the center-of-momentum and center-of-energy are now derived. 

Equating the momentum flux terms in figure 2b to define the plane through which zero net 
momentum flux passes, 

(U~>~pG(a}(Cc<Uo>G -- Up) = (UL),_pL(I -- a)(Up - CL<UL}L) 

we obtain using [7], [13] and [15], 

=" C~p~<u~>J(1 - ~>+ C~p~(u~>J(~> =-. 
Up pL(UL}L(I--a>+pG(u~>a(a> p 

[64] 

Finally, defining the plane through which no net energy flux passes, by equating the energy flux 
terms in figure 2c, 

(eo)ooo(a)(Ko(u~)~ - U,) = {eL >LpL(I -- a)(U, - KL(UL)L), 

we obtain, 

U, a= KLpL(eL>L(1- a>(UL>L + K~p~{e~)o(a>(U~>~= Ge' 
pL(1 -- a)(eL)L + p~(a){ea)o ~(p) 

[65] 

where use of [13] and [57] has been made and 

& 
e' = KL(1 - x>(eL>L + Ko(x>(e~>a = KL(e~}~ + (x>e%. [661 

a s ,  

The continuity equation in terms of the velocity of the center-of-mass has already been given 

D,  OUm 
D--t-((P)Ax-s)+(P)A'-" . = 0. [30] 

The momentum equation can be written in terms of the velocity of the center-of-momentum by 
expanding the R.H.S. of [14] and combining it with [64] to yield, 

where, 

ap r,P~ 1 Dp(GAx-,) GaUp 
oz g{p} sin 0 -Ax_, = Ax-s Dt + az [67] 

D___~. L O+u ~ a 
Dt a-7 ~-z" 

Finally, the energy equation can be written in terms of the velocity of the center of energy by 
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introducing [13] into [49] and regrouping the terms using [57] and [65] to yield, 

1 D ,  , , 3 U , = q " P h + q , , , + a p  
Ax-, Dt [(p)~A*-']+(p)~ Oz A,_, 3---[ 

where, 

Clearly 

[68] 

De 

the conservation equations given by [30], [67], and [68] are quite compact and 
phenomenologically appealing. Nevertheless, one must deal with a different velocity in each 
equation. Since there are no two-phase dynamics problems that can be solved using only one of 
the three conservation equations, these formulations yield no fundamental simplification; 
however, they may be convenient for certain applications. Other forms are also possible. 

For instance one can define a momentum-mass drift velocity, 

& 

Vpm=U~-Um 

and an energy-mass drift velocity, 

& 

V e m = U , - - U ~ .  

These drift velocities have an interesting physical meaning, although their usefulness is currently 
limited by the fact that empirical correlations for them have not yet been developed. 
Nevertheless, the conservation equations can be rewritten in terms of U,,, Vpm and Ve,. as, 

Dm OUm 
~-[((p )A~ ~,) + (p )A .... ~ = O . [30] 

ap 
(p)Ax-,I~Utm +k(GAx- ,Vom)  = -Ax - , oT  - rwP, - g(p)Ax-, sin 0. [69] 

D,~+ 3 
A~_,O_---P + q"P, + . (P)Ax-'-D-i- ~z [e(p)Ax-'V*"*)= Ot q"Ax-s [70] 

The second terms on the L.H.S. of the momentum and energy conservation equations clearly 
represent the momentum and energy drift fluxes through the center-of-mass plane. For certain 
cases of interest, over a limited range of variables, the drift flux gradients might be negligible, or 
analytically tractable. In these cases one would obtain a set of equations that have the simplicity 
and ease of analytical solution of the homogeneous formulation, and yet retain the more realistic 
character of the present formulations. Moreover the drift flux terms of [69] and [70] may be used 
to quantify the approximations involved when homogeneous-flow models are used. 

7. C O N C L U S I O N S  

The conservation equations of two-phase flow can be manipulated and recast into many 
different forms. We have not tabulated all the possible forms, but rather, discussed and related 
several popular forms which frequently appear in the literature of two-phase flow. The choice of 
a form depends on the particular problem to be solved and, in many cases, may be largely a 
matter of convenience or taste. 

Spatial correlation coefficients accounting for the radial distribution of void fraction, velocity 
and enthalpy of each phase have been systematically introduced into the conservation equations. 
The generalized formulations given in this paper are an improvement over the classical 
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separated-flow model equations, and are recommended for the analysis of two-phase flow 
phenomena. 
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